The Upper Bound Property for Solid Mechanics of the Linearly Conforming Radial Point Interpolation Method (lc-rpim)
نویسندگان
چکیده
It has been proven by the authors that both the upper and lower bounds in energy norm of the exact solution to elasticity problems can now be obtained by using the fully compatible finite element method (FEM) and linearly conforming point interpolation method (LC-PIM). This paper examines the upper bound property of the linearly conforming radial point interpolation method (LC-RPIM), where the Radial Basis Functions (RBFs) are used to construct shape functions and node-based smoothed strains are used to formulate the discrete system equations. It is found that the LC-RPIM also provides the upper bound of the exact solution in energy norm to elasticity problems, and it is much sharper than that of LC-PIM due to the decrease of stiffening effect. An effective procedure is also proposed to determine both upper and lower bounds for the exact solution without knowing it in advance: using the LC-RPIM to compute the upper bound, using the standard fully compatible FEM to compute the lower bound based on the same mesh for the problem domain. Numerical examples of 1D, 2D and 3D problems are presented to demonstrate these important properties of LC-RPIM.
منابع مشابه
Elasto-plastic analysis of discontinuous medium using linearly conforming radial point interpolation method
In this paper, the linearly conforming enriched radial basis point interpolation method is implemented for the elasto-plastic analysis of discontinuous medium. The linear conformability of the method is satisfied by the application of stabilized nodal integration and the enrichment of radial basis functions is achieved by the addition of linear polynomial terms. To implement the method for the ...
متن کاملA meshfree radial point interpolation method (RPIM) for three-dimensional solids
A meshfree radial point interpolation method (RPIM) is developed for stress analysis of threedimensional (3D) solids, based on the Galerkin weak form formulation using 3D meshfree shape functions constructed using radial basis functions (RBFs). As the RPIM shape functions have the Kronecker delta functions property, essential boundary conditions can be enforced as easily as in the finite elemen...
متن کاملAnalysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method
In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matric...
متن کاملNumerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
متن کاملSmoothed Point Interpolation Methods for 2d and 3d Elasticity Problems with Certified Solutions
A class of smoothed point interpolation methods (smoothed PIMs) are introduced in this paper, which are derived from the smoothed Galerkin weak-form for variational formulation based on the gradient smoothing techniques [1]. In the scheme of smoothed PIMs, the strain smoothing operation [2] can be applied on different types of smoothing domains which are constructed centring at field nodes, edg...
متن کامل